Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38516891

RESUMO

BACKGROUNDTransrenal cell-free tumor DNA (TR-ctDNA), which transits from the bloodstream into urine, has the potential to enable noninvasive cancer detection for a wide variety of nonurologic cancer types.MethodsUsing whole-genome sequencing, we discovered that urine TR-ctDNA fragments across multiple cancer types are predominantly ultrashort (<50 bp) and, therefore, likely to be missed by conventional ctDNA assays. We developed an ultrashort droplet digital PCR assay to detect TR-ctDNA originating from HPV-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC) and confirmed that assaying ultrashort DNA is critical for sensitive cancer detection from urine samples.ResultsTR-ctDNA was concordant with plasma ctDNA for cancer detection in patients with HPV+ OPSCC. As proof of concept for using urine TR-ctDNA for posttreatment surveillance, in a small longitudinal case series, TR-ctDNA showed promise for noninvasive detection of recurrence of HPV+ OPSCC.ConclusionOur data indicate that focusing on ultrashort fragments of TR-ctDNA will be important for realizing the full potential of urine-based cancer diagnostics. This has implications for urine-based detection of a wide variety of cancer types and for facilitating access to care through at-home specimen collections.FundingNIH grants R33 CA229023, R21 CA225493; NIH/National Cancer Institute grants U01 CA183848, R01 CA184153, and P30CA046592; American Cancer Society RSG-18-062-01-TBG; American Cancer Society Mission Boost grant MBGI-22-056-01-MBG; and the A. Alfred Taubman Medical Research Institute.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Estados Unidos , Humanos , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Orofaríngeas/diagnóstico , Neoplasias Orofaríngeas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , DNA de Neoplasias , Biópsia Líquida
2.
Oral Oncol ; 143: 106436, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269557

RESUMO

OBJECTIVES: To develop a high-performance droplet digital PCR (ddPCR) assay capable of enhancing the detection of human papillomavirus (HPV) circulating tumor DNA (ctDNA) in plasma from patients with HPV-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC). MATERIALS AND METHODS: Plasma samples from subjects with HPV+ OPSCC were collected. We developed a high-performance ddPCR assay designed to simultaneously target nine regions of the HPV16 genome. RESULTS: The new assay termed 'ctDNA HPV16 Assessment using Multiple Probes' (CHAMP- 16) yielded significantly higher HPV16 counts compared to our previously validated 'Single-Probe' (SP) assay and a commercially available NavDx® assay. Analytical validation demonstrated that the CHAMP-16 assay had a limit of detection (LoD) of 4.1 copies per reaction, corresponding to < 1 genome equivalent (GE) of HPV16. When tested on plasma ctDNA from 21 patients with early-stage HPV+ OPSCC and known HPV16 ctDNA using the SP assay, all patients were positive for HPV16 ctDNA in both assays and the CHAMP-16 assay displayed 6.6-fold higher HPV16 signal on average. Finally, in a longitudinal analysis of samples from a patient with recurrent disease, the CHAMP-16 assay detected HPV16 ctDNA signal âˆ¼ 20 months prior to the conventional SP assay. CONCLUSION: Increased HPV16 signal detection using the CHAMP-16 assay suggests the potential for detection of recurrences significantly earlier than with conventional ddPCR assays in patients with HPV16+ OPSCC. Critically, this multi-probe approach maintains the cost-benefit advantage of ddPCR over next generation sequencing (NGS) approaches, supporting the cost-effectiveness of this assay for both large population screening and routine post-treatment surveillance.


Assuntos
Carcinoma de Células Escamosas , DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Papillomavirus Humano , Carcinoma de Células Escamosas/patologia , Papillomavirus Humano 16/genética , Reação em Cadeia da Polimerase
3.
Front Genet ; 13: 879108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571046

RESUMO

Cancer biomarkers are a promising tool for cancer detection, personalization of therapy, and monitoring of treatment response or recurrence. "Liquid biopsy" commonly refers to minimally invasive or non-invasive sampling of a bodily fluid (i.e., blood, urine, saliva) for detection of cancer biomarkers such as circulating tumor cells or cell-free tumor DNA (ctDNA). These methods offer a means to collect frequent tumor assessments without needing surgical biopsies. Despite much progress with blood-based liquid biopsy approaches, there are limitations-including the limited amount of blood that can be drawn from a person and challenges with collecting blood samples at frequent intervals to capture ctDNA biomarker kinetics. These limitations are important because ctDNA is present at extremely low levels in plasma and there is evidence that measuring ctDNA biomarker kinetics over time can be useful for clinical prediction. Additionally, blood-based assays require access to trained phlebotomists and often a trip to a healthcare facility. In contrast, urine is a body fluid that can be self-collected from a patient's home, at frequent intervals, and mailed to a laboratory for analysis. Multiple reports indicate that fragments of ctDNA pass from the bloodstream through the kidney's glomerular filtration system into the urine, where they are known as trans-renal ctDNA (TR-ctDNA). Accumulating studies indicate that the limitations of blood based ctDNA approaches for cancer can be overcome by measuring TR-ctDNA. Here, we review current knowledge about TR-ctDNA in urine as a cancer biomarker approach, and discuss its clinical potential and open questions in this research field.

4.
Clin Cancer Res ; 28(2): 350-359, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702772

RESUMO

PURPOSE: In locally advanced p16+ oropharyngeal squamous cell carcinoma (OPSCC), (i) to investigate kinetics of human papillomavirus (HPV) circulating tumor DNA (ctDNA) and association with tumor progression after chemoradiation, and (ii) to compare the predictive value of ctDNA to imaging biomarkers of MRI and FDG-PET. EXPERIMENTAL DESIGN: Serial blood samples were collected from patients with AJCC8 stage III OPSCC (n = 34) enrolled on a randomized trial: pretreatment; during chemoradiation at weeks 2, 4, and 7; and posttreatment. All patients also had dynamic-contrast-enhanced and diffusion-weighted MRI, as well as FDG-PET scans pre-chemoradiation and week 2 during chemoradiation. ctDNA values were analyzed for prediction of freedom from progression (FFP), and correlations with aggressive tumor subvolumes with low blood volume (TVLBV) and low apparent diffusion coefficient (TVLADC), and metabolic tumor volume (MTV) using Cox proportional hazards model and Spearman rank correlation. RESULTS: Low pretreatment ctDNA and an early increase in ctDNA at week 2 compared with baseline were significantly associated with superior FFP (P < 0.02 and P < 0.05, respectively). At week 4 or 7, neither ctDNA counts nor clearance were significantly predictive of progression (P = 0.8). Pretreatment ctDNA values were significantly correlated with nodal TVLBV, TVLADC, and MTV pre-chemoradiation (P < 0.03), while the ctDNA values at week 2 were correlated with these imaging metrics in primary tumor. Multivariate analysis showed that ctDNA and the imaging metrics performed comparably to predict FFP. CONCLUSIONS: Early ctDNA kinetics during definitive chemoradiation may predict therapy response in stage III OPSCC.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Biomarcadores , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , DNA Tumoral Circulante/genética , Fluordesoxiglucose F18 , Humanos , Cinética , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/terapia , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Prognóstico , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço
5.
Oncotarget ; 12(13): 1214-1229, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34194620

RESUMO

Despite the rising incidence of human papillomavirus related (HPV+) oropharyngeal squamous cell carcinoma (OPSCC), treatment of metastatic disease remains palliative. Even with new treatments such as immunotherapy, response rates are low and can be delayed, while even mild tumor progression in the face of an ineffective therapy can lead to rapid death. Real-time biomarkers of response to therapy could improve outcomes by guiding early change of therapy in the metastatic setting. Herein, we developed and analytically validated a new droplet digital PCR (ddPCR)-based assay for HPV16 circulating tumor DNA (ctDNA) and evaluated plasma HPV16 ctDNA for predicting treatment response in metastatic HPV+ OPSCC. We found that longitudinal changes HPV16 ctDNA correlate with treatment response and that ctDNA responses are observed earlier than conventional imaging (average 70 days, range: 35-166). With additional validation in multi-site studies, this assay may enable early identification of treatment failure, allowing patients to be directed promptly toward clinical trials or alternative therapies.

7.
J Infect Dis ; 224(8): 1287-1293, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870434

RESUMO

BACKGROUND: Previous studies demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be detected for weeks after infection. The significance of this finding is unclear and, in most patients, does not represent active infection. Detection of subgenomic RNA has been proposed to represent productive infection and may be a useful marker for monitoring infectivity. METHODS: We used quantitative reverse-transcription polymerase chain reaction (RT-qPCR) to quantify total and subgenomic nucleocapsid (sgN) and envelope (sgE) transcripts in 185 SARS-CoV-2-positive nasopharyngeal swab samples collected on hospital admission and to relate to symptom duration. RESULTS: We find that all transcripts decline at the same rate; however, sgE becomes undetectable before other transcripts. The median duration of symptoms to a negative test is 14 days for sgE and 25 days for sgN. There is a linear decline in subgenomic compared to total RNA, suggesting that subgenomic transcript copy number is dependent on copy number of total transcripts. The mean difference between total and sgN is 16-fold and the mean difference between total and sgE is 137-fold. This relationship is constant over duration of symptoms, allowing prediction of subgenomic copy number from total copy number. CONCLUSIONS: Subgenomic RNA may be no more useful in determining infectivity than a copy number threshold determined for total RNA.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Carga Viral , Idoso , COVID-19/transmissão , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/normas , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/patologia , Nasofaringe/virologia , Fosfoproteínas/genética , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos , Valores de Referência , Estudos Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
8.
medRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33688671

RESUMO

Understanding viral load in patients infected with SARS-CoV-2 is critical to epidemiology and infection control. Previous studies have demonstrated that SARS-CoV-2 RNA can be detected for many weeks after symptom onset. The clinical significance of this finding is unclear and, in most patients, likely does not represent active infection. There are, however, patients who shed infectious virus for weeks. Detection of subgenomic RNA transcripts expressed by SARS-CoV-2 has been proposed to represent productive infection and may be a tractable marker for monitoring infectivity. Here, we use RT-PCR to quantify total and subgenomic nucleocapsid (N) and envelope (E) transcripts in 190 SARS-CoV-2 positive samples collected on hospital admission. We relate these findings to duration of symptoms. We find that all transcripts decline at the same rate; however, subgenomic E becomes undetectable before other transcripts. In Kaplan-Meier analysis the median duration of symptoms to a negative test is 14 days for sgE and 25 days for sgN. There is a linear decline in subgenomic RNA compared to total RNA suggesting subgenomic transcript copy number is highly dependent on copy number of total transcripts. The mean difference between total N and subgenomic N is 16-fold (4.0 cycles) and the mean difference between total E and sub-genomic E is 137-fold (7.1 cycles). This relationship is constant over duration of symptoms allowing prediction of subgenomic copy number from total copy number. Although Subgenomic E is undetectable at a time that may more closely reflect the duration of infectivity, its utility in determining active infection may be no more useful than a copy number threshold determined for total transcripts.

9.
Curr Treat Options Oncol ; 22(3): 21, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33559043

RESUMO

OPINION STATEMENT: Human papilloma virus (HPV) related head and neck cancer is rising in prevalence, preferentially affecting young patients and imparting long term toxicities. Despite this, there are no screening tests or clinical biomarkers for treatment monitoring. HPV circulating tumor DNA (HPV ctDNA) represents a novel circulating biomarker which may provide real-time assessment of tumor response to therapy and recurrence. Early work suggests the promise of this assay as a predictive biomarker in numerous clinical settings, namely risk of recurrence after chemoradiation in locally advanced disease. Advancement of these findings to the clinic will require a collaborative effort in the field, including technical harmonization of assay testing characteristics, understanding of the normal kinetics in patients being treated with standard of care therapies, and appropriately designed phase III trials prior to implementation in the clinic. If successful, HPV ctDNA has the potential to revolutionize clinical trial treatment paradigms and transform patient care.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , DNA de Neoplasias , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Animais , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Detecção Precoce de Câncer/métodos , Humanos , Biópsia Líquida/métodos , Técnicas de Diagnóstico Molecular , Papillomaviridae , Infecções por Papillomavirus/virologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Resultado do Tratamento
10.
PLoS Genet ; 10(2): e1004133, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516405

RESUMO

Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Domínios HMG-Box/genética , Proteínas de Grupo de Alta Mobilidade/genética , Motivos de Nucleotídeos/genética , Ligação Proteica , Proteínas Repressoras/genética , Transdução de Sinais/genética , Via de Sinalização Wnt/genética
11.
EMBO J ; 30(10): 2031-43, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21468031

RESUMO

C-terminal-binding protein (CtBP) is a well-characterized transcriptional co-repressor that requires homo-dimerization for its activity. CtBP can both repress and activate Wingless nuclear targets in Drosophila. Here, we examine the role of CtBP dimerization in these opposing processes. CtBP mutants that cannot dimerize are able to promote Wingless signalling, but are defective in repressing Wingless targets. To further test the role of dimerization in repression, the positions of basic and acidic residues that form inter-molecular salt bridges in the CtBP dimerization interface were swapped. These mutants cannot homo-dimerize and are compromised for repression. However, their co-expression leads to hetero-dimerization and consequent repression of Wingless targets. Our results support a model where CtBP is a gene-specific regulator of Wingless signalling, with some targets requiring CtBP dimers for inhibition while other targets utilize CtBP monomers for activation of their expression. Functional interactions between CtBP and Pygopus, a nuclear protein required for Wingless signalling, support a model where monomeric CtBP acts downstream of Pygopus in activating some Wingless targets.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/biossíntese , Drosophila/fisiologia , Regulação da Expressão Gênica , Multimerização Proteica , Proteína Wnt1/biossíntese , Oxirredutases do Álcool/genética , Animais , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/genética , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fatores de Transcrição/metabolismo
12.
EMBO J ; 25(12): 2735-45, 2006 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-16710294

RESUMO

Regulation of Wnt transcriptional targets is thought to occur by a transcriptional switch. In the absence of Wnt signaling, sequence-specific DNA-binding proteins of the TCF family repress Wnt target genes. Upon Wnt stimulation, stabilized beta-catenin binds to TCFs, converting them into transcriptional activators. C-terminal-binding protein (CtBP) is a transcriptional corepressor that has been reported to inhibit Wnt signaling by binding to TCFs or by preventing beta-catenin from binding to TCF. Here, we show that CtBP is also required for the activation of some Wnt targets in Drosophila. CtBP is recruited to Wnt-regulated enhancers in a Wnt-dependent manner, where it augments Armadillo (the fly beta-catenin) transcriptional activation. We also found that CtBP is required for repression of a subset of Wnt targets in the absence of Wnt stimulation, but in a manner distinct from previously reported mechanisms. CtBP binds to Wnt-regulated enhancers in a TCF-independent manner and represses target genes in parallel with TCF. Our data indicate dual roles for CtBP as a gene-specific activator and repressor of Wnt target gene transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Proteínas Wnt/metabolismo , Oxirredutases do Álcool , Animais , Proteínas do Domínio Armadillo/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Drosophila/citologia , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Olho/citologia , Modelos Biológicos , Fosfoproteínas/deficiência , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Transativadores/deficiência , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...